Herpes Simplex Virus 1 Us3 Deletion Mutant is Infective Despite Impaired Capsid Translocation to the Cytoplasm
نویسندگان
چکیده
Herpes simplex virus 1 (HSV-1) capsids are assembled in the nucleus bud at the inner nuclear membrane into the perinuclear space, acquiring envelope and tegument. In theory, these virions are de-enveloped by fusion of the envelope with the outer nuclear membrane and re-enveloped by Golgi membranes to become infective. Us3 enables the nucleus to cytoplasm capsid translocation. Nevertheless, Us3 is not essential for the production of infective progeny viruses. Determination of phenotype distribution by quantitative electron microscopy, and calculation per mean nuclear or cell volume revealed the following: (i) The number of R7041(∆US3) capsids budding at the inner nuclear membrane was significantly higher than that of wild type HSV-1; (ii) The mean number of R7041(∆US3) virions per mean cell volume was 2726, that of HSV-1 virions 1460 by 24 h post inoculation; (iii) 98% of R7041(∆US3) virions were in the perinuclear space; (iv) The number of R7041(∆US3) capsids in the cytoplasm, including those budding at Golgi membranes, was significantly reduced. Cell associated R7041(∆US3) yields were 2.37×10(8) and HSV-1 yields 1.57×10(8) PFU/mL by 24 h post inoculation. We thus conclude that R7041(∆US3) virions, which acquire envelope and tegument by budding at the inner nuclear membrane into the perinuclear space, are infective.
منابع مشابه
Endoplasmic reticulum - to - Golgi transitions upon herpes virus infection
Herpesvirus capsids are assembled in the nucleus, translocated Background to the perinuclear space by budding, acquiring tegument and envelope, or released to the cytoplasm via impaired nuclear envelope. One model proposes that envelopment, “de-envelopment” and “re-envelopment” is essential for production of infectious virus. Glycoproteins gB/gH were reported to be essential for de-envelopment,...
متن کاملEndoplasmic reticulum-to-Golgi transitions upon herpes virus
Herpesvirus capsids are assembled in the nucleus before they Background are translocated to the perinuclear space by budding, acquiring tegument and envelope, or releasing to the cytoplasm in a “naked” state via impaired nuclear envelope. One model proposes that envelopment, “de-envelopment” and “re-envelopment” are essential steps for production of infectious virus. Glycoproteins gB/gH were re...
متن کاملHerpes simplex virus 1 serine/threonine kinase US3 hyperphosphorylates IRF3 and inhibits beta interferon production.
Viral infection initiates a series of signaling cascades that lead to the transcription of interferons (IFNs), finally inducing interferon-stimulated genes (ISGs) to eliminate viruses. Viruses have evolved a variety of strategies to modulate host IFN-mediated immune responses. Herpes simplex virus 1 (HSV-1) US3, a Ser/Thr kinase conserved in alphaherpesviruses, was previously reported to counte...
متن کاملHerpes simplex virus 1 protein kinase is encoded by open reading frame US3 which is not essential for virus growth in cell culture.
Earlier reports have described a novel protein kinase in cells infected with herpes simplex or pseudorabies viruses. These novel enzymes were characterized by their acceptance of protamine as a substrate and by their differential chromatographic behavior in anion-exchange chromatography. We report that this activity was not present in extracts of uninfected cells or of cells infected with a mut...
متن کاملThe herpes simplex virus 1 protein kinase US3 is required for protection from apoptosis induced by the virus.
An earlier report showed that a disabled mutant lacking both copies of the major regulatory gene (alpha4) of herpes simplex virus 1 induced DNA degradation characteristic of apoptosis in infected cells, whereas the wild-type virus protected cells from apoptosis induced by thermal shock. More extensive analyses of the disabled mutant revealed a second mutation which disabled US3, a viral gene en...
متن کامل